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ABSTRACT
Reducing the energy footprint of data centers continues to receive significant
attention due to both its financial and environmental impact. There are numerous
methods that limit the impact of both factors, such as expanding the use of renewable
energy or participating in automated demand-response programs. To take advantage
of these methods, servers and applications must gracefully handle intermittent
constraints in their power supply. In this paper, we propose blinking—metered
transitions between a high-power active state and a low-power inactive state—as the
primary abstraction for conforming to intermittent power constraints. We design
Blink, an application-independent hardware–software platform for developing and
evaluating blinking applications, and define multiple types of blinking policies. We
then use Blink to design both a blinking version of memcached (BlinkCache) and
a multimedia cache (GreenCache) to demonstrate how application characteristics
affect the design of blink-aware distributed applications. Our results show that for
BlinkCache, a load-proportional blinking policy combines the advantages of both
activation and synchronous blinking for realistic Zipf-like popularity distributions
and wind/solar power signals by achieving near optimal hit rates (within 15% of
an activation policy), while also providing fairer access to the cache (within 2% of a
synchronous policy) for equally popular objects. In contrast, for GreenCache, due to
multimedia workload patterns, we find that a staggered load proportional blinking
policy with replication of the first chunk of each video reduces the buffering time at
all power levels, as compared to activation or load-proportional blinking policies.

Subjects Distributed and Parallel Computing, Multimedia, Operating Systems
Keywords Green data center, Intermittent power, Blink, Green cache, Memcached,
Multimedia cache

INTRODUCTION
Energy-related costs have become a significant fraction of total cost of ownership (TCO)

in modern data centers. Recent estimates attribute 31% of TCO to both purchasing power

and building and maintaining the power distribution and cooling infrastructure (Hamil-

ton, 2010). Consequently, techniques for reducing the energy footprint of data centers
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continue to receive significant attention in both industry and the research community.

We categorize these techniques broadly as being either primarily workload-driven or

power-driven. Workload-driven systems reconfigure applications as their workload

demands vary to use the least possible amount of power to satisfy demand (Ahmad &

Vijaykumar, 2010; Moore, Chase & Ranganathan, 2006; Moore et al., 2005). In contrast,

power-driven systems reconfigure applications as their power supply varies to achieve the

best performance possible given the power constraints.

While prior work has largely emphasized workload-driven systems, power-driven

systems are becoming increasingly important. For instance, data centers are beginning

to rely on intermittent renewable energy sources, such as solar and wind, to partially

power their operations (Gupta, 2010; Stone, 2007). Intermittent power constraints are

also common in developing regions that experience “brownouts” where the electric grid

temporarily reduces its supply under high load (Chase et al., 2001; Verma et al., 2009).

The key challenge in power-driven systems is optimizing application performance in

the presence of power constraints that may vary significantly and frequently over time.

Importantly, these power and resource consumption constraints are independent of

workload demands.

The ability to use intermittent power introduces other opportunities, beyond increasing

use of renewable energy, for optimizing a data center to be cheaper, greener, and more

reliable. We argue that designing systems to exploit these optimizations will move us closer

to the vision of a net-zero data center.

• Market-based electricity pricing. Electricity prices vary continuously based on supply

and demand. Many utilities now offer customers access to market-based rates that

vary every five minutes to an hour (Elevate Energy, 2011). As a result, the power data

centers are able to purchase for a fixed price varies considerably and frequently over

time. For instance, in the New England hourly wholesale market in 2011, maintaining

a fixed $55/h budget, rather than a fixed per-hour power consumption, purchases

16% more power for the same price (Fig. 1). The example demonstrates that data

centers that execute delay-tolerant workloads, such as data-intensive batch jobs, have an

opportunity to reduce their electric bill by varying their power usage based on price.

• Unexpected blackouts or brownouts. Data centers often use UPSs for backup power

during unexpected blackouts. An extended blackout may force a data center to limit

power consumption at a low level to extend UPS lifetime. While low power levels impact

performance, it may be critical for certain applications to maintain some, even low, level

of availability, e.g., disaster response applications. As we discuss, maintaining availability

at low power levels is challenging if applications access distributed state. Further, in

many developing countries, the electric grid is highly unstable with voltage rising and

falling unexpectedly based on changing demands. These “brownouts” may also affect

the power available to data centers over time.

• 100% power infrastructure utilization. Another compelling use of intermittent power

is continuously operating a data center’s power delivery infrastructure at 100%. Since
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Figure 1 Electricity prices vary every five minutes to an hour in wholesale markets, resulting in the
power available for a fixed monetary budget varying considerably over time

data center capital costs are enormous, maximizing the power delivery infrastructure’s

utilization by operating as many servers as possible is important. However, data centers

typically provision power for peak demands, resulting in low utilization (Fan, Weber

& Barroso, 2007a; Kontorinis et al., 2012). In this case, intermittent power is useful

to continuously run a background workload on a set of servers—designed explicitly

for intermittent power—that always consume the excess power PDUs are capable

of delivering. Since the utilization (and power usage) of a data center’s foreground

workload may vary rapidly, the background servers must be capable of quickly varying

power usage to not exceed the power delivery infrastructure’s limits.

In this paper, we present Blink, a new energy abstraction for gracefully handling

intermittent power constraints. Blinking applies a duty cycle to servers that controls the

fraction of time they are in the active state, e.g., by activating and deactivating them in

succession, to gracefully vary their energy footprint. For example, a system that blinks

every 30 s, i.e., is on for 30 s and then off for 30 s, consumes half the energy, modulo

overheads, of an always-on system. Blinking generalizes the extremes of either keeping a

server active (a 100% duty cycle) or inactive (a 0% duty cycle) by providing a spectrum

of intermediate possibilities. Blinking builds on prior work in energy-aware design. First,

several studies have shown that turning a server off when not in use is the most effective

method for saving energy in server clusters (Chase et al., 2001; Pinheiro et al., 2001).

Second, blinking extends the PowerNap (Meisner, Gold & Wenisch, 2009) concept, which

advocates frequent transitions to a low-power sleep state, as an effective means of reducing

idle power waste.

An application’s blinking policy decides when each node is active or inactive at any

instant based on both its workload characteristics and energy constraints. Clearly, blinking

impacts application performance, since there may not always be enough energy to power
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the nodes necessary to meet demand. Hence, the goal of a blinking policy is to minimize

performance degradation as power varies. In general, application modifications are nec-

essary to adapt traditional server-based applications for blinking, since these applications

implicitly assume always-on, or mostly-on, servers. Blinking forces them to handle regular

disconnections more often associated with weakly connected (Terry et al., 1995) environ-

ments, e.g., mobile, where nodes are unreachable whenever they are off or out of range.

Example applications for blink
To demonstrate how blinking impacts common data center applications, we explore

the design of BlinkCache—a blinking version of memcached that gracefully handles

intermittent power constraints and GreenCache—a distributed cache for multimedia

data that runs off renewable energy—as proof-of-concept examples.

Memcached is a distributed memory cache for storing key-value pairs that many

prominent Internet sites, including LiveJournal, Facebook, Flickr, Twitter, YouTube, and

others, use to improve their performance. For Internet services that store user-generated

content, the typical user is often interested in the relatively unpopular objects in the

heavy tail, since these objects represent either their personal content or the content of

close friends and associates. As one example, Fig. 2 depicts a popularity distribution for

Facebook group pages in terms of their number of fans. While the figure only shows the

popularity rank of the top 10,000 pages, Facebook has over 20 million group pages in total.

Most of these pages are nearly equally unpopular. For these equally unpopular objects,

blinking nodes synchronously to handle variable power constraints results in fairer access

to the cache because the probability of finding an object becomes equal for all objects in

the cache. While fair cache access is important, maximizing memcached’s hit rate requires

prioritizing access to the most popular objects. We explore these performance tradeoffs

in-depth for a memcached cluster with intermittent power constraints.

In contrast, GreenCache leverages the blinking abstraction to modulate its energy

footprint to match available power while minimizing both backhaul bandwidth and

client access latency for a large video library. As discussed above, minimizing bandwidth

usage (or cost) and maximizing users’ experience, e.g., by reducing buffering time, are

the two primary goals of a multimedia cache. We analyze video traffic behavior of a large

number of users for the most popular user-generated video site, YouTube, and exploit

traffic characteristics and video properties to design new placement and blinking policies

for minimizing bandwidth usage and maximizing users’ experience.

Contributions
In designing, implementing, and evaluating BlinkCache and GreenCache as proof-

of-concept examples of using the blink abstraction, this paper makes the following

contributions.1

1 This paper combines and extends
two prior conference publications:
Blink (Sharma et al., 2011) and
GreenCache (Sharma et al., 2013). In
addition to rewriting this paper from the
ground up to merge our prior work, we
have also designed (a) a blink emulator
to emulate a renewable-powered server
cluster and (b) used the emulator
for scalability analysis of blinking
applications on large server clusters.

• Make the case for blinking systems. We propose blinking systems to deal with variable

power constraints in server clusters. We motivate why blinking is a beneficial abstraction
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Figure 2 The popularity of web data often exhibits a long heavy tail of equally unpopular objects. This
graph ranks the popularity of Facebook group pages by their number of fans.

for dealing with intermittent power constraints, define different types of blinking

policies, and discuss its potential impact on a range of distributed applications.

• Design a blinking hardware/software platform. We design Blink, an application-

independent hardware/software platform to develop and evaluate blinking applications.

Our small-scale prototype uses a cluster of 10 low-power motherboards connected to a

programmable power meter that replays custom power traces and variable power traces

from a solar and wind energy harvesting deployment.

• Design, Implement, Evaluate BlinkCache and GreenCache. We use Blink to experi-

ment with blinking policies for BlinkCache and GreenCache, a variant of memcached

and multimedia cache, respectively, and optimize the performance for intermittent

power constraints. For BlinkCache, our hypothesis is that a load-proportional blinking

policy, which keeps nodes active in proportion to the popularity of the data they store,

combined with object migration to group together objects with similar popularities,

results in near optimal cache hit rates, as well as fairness for equally unpopular objects.

To validate our hypothesis, we compare the performance of activation, synchronous,

and load-proportional policies for realistic Zipf-like popularity distributions. We show

that a load-proportional policy is significantly more fair than an optimal activation

policy for equally popular objects (4X at low power) while achieving a comparable

hit rate (over 60% at low power). For GreenCache, our hypothesis is that a staggered

load proportional policy which keeps the nodes active based on their load and the

available power in staggered manner, with replication of the first chunk of each

video on all servers, yields lower buffering time for clients, compared to activation or

load-proportional blinking policies, when operating under variable power.

• Blinking scalability performance. To see how blinking scales with the size of a cluster

we emulate our small-scale server cluster and study the performance of BlinkCache
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and GreenCache for a 1,000 node cluster. Our hypothesis is that the performance of a

blinking policy should be independent of the cluster size.

‘Blink: Rationale and Overview’ provides an overview of the blinking abstraction and

various blinking policies. ‘Blink Prototype’ presents Blink’s hardware and software archi-

tecture in detail, while ‘BlinkCache: Blinking Memcached’ presents design alternatives for

BlinkCache, a blinking version of memcached. ‘GreenCache: Blinking Multimedia Cache’

presents the design techniques for GreenCache, a blinking version of multimedia cache.

We provide the implementation and evaluation of both applications in ‘Implementation’

and ‘Evaluation’, respectively. Finally, ‘Related Work’ discusses related work, ‘Applicability

of Blinking’ outlines the applicability of blinking to other applications, and ‘Conclusion’

concludes.

BLINK: RATIONALE AND OVERVIEW
Today’s computing systems are not energy-proportional (Barroso & Hölzle, 2007)—a

key factor that hinders data centers from effectively varying their power consumption by

controlling their utilization. Designing energy-proportional systems is challenging, in part,

since a variety of server components, including the CPU, memory, disk, motherboard, and

power supply, now consume significant amounts of power. Thus, any power optimization

that targets only a single component is not sufficient for energy-proportionality, since

it reduces only a fraction of the total power consumption (Barroso & Hölzle, 2007; Le

Sueur & Heiser, 2010). As one example, due to the power consumption of non-CPU

components, a modern server that uses dynamic voltage and frequency scaling in the CPU

at low utilization may still operate at over 50% of its peak power (Anderson et al., 2009;

Tolia et al., 2008). Thus, deactivating entire servers, including most of their components,

remains the most effective technique for controlling energy consumption in server farms,

especially at low power levels that necessitate operating servers well below 50% peak power

on average.

However, data centers must be able to rapidly activate servers whenever workload

demand increases. PowerNap (Meisner, Gold & Wenisch, 2009) proposes to eliminate idle

power waste and approximate an energy-proportional server by rapidly transitioning the

entire server between a high-power active state and a low-power inactive state. PowerNap

uses the ACPI S3 state, which places the CPU and peripheral devices in sleep mode but pre-

serves DRAM memory state, to implement inactivity. Transition latencies at millisecond-

scale, or even lower, may be possible between ACPI’s fully active S0 state and its S3 state. By

using S3 to emulate the inactive “off” state.2 PowerNap is able to consume minimal energy

2 We use “active” and “on” interchange-
ably to reference ACPI’s S0 state, and
inactive and “off” interchangeably to
represent ACPI’s S3 state.

while sleeping. Typical high-end servers draw as much as 40× less power in S3.

Blink extends PowerNap in important ways. First, PowerNap is a workload-driven

technique that eliminates idle server power waste—it uses rapid transitions in a workload-

driven fashion to activate each server when work arrives and deactivate it when idle. In

contrast, Blink is a power-driven technique that regulates average node power consumption

independent of workload demands. Second, the PowerNap mechanism applies to each

server independently, while Blink applies to collections of servers. Blinking policies,
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Table 1 Latencies for several desktop and laptop models to perform a complete S3 cycle (suspend and
resume).

Type Model S3 transition time (s)

Desktop Optiplex 745 13.8

Desktop Dimension 4600 12.0

Laptop Lenovo X60 11.7

Laptop Lenovo T60 9.7

Laptop Toshiba M400 9.1

Laptop OLPC-XO (w/NIC) 1.6

Laptop OLPC-XO (no NIC) 0.2

which we formally define next, are able to capture, and potentially exploit, cross-server

dependencies and correlations in distributed applications. Finally, unlike workload-driven

transitions, blinking provides benefits even for the non-ideal S3 transition latencies on the

order of seconds that are common in practice, as we show in ‘Balancing performance and

fairness.’3 Table 1 shows S3 transition latencies for a variety of platforms, as reported in

3 PowerNap’s on-demand transitions
show little benefit once latencies exceed
100 ms (Meisner, Gold & Wenisch, 2009).

Agarwal et al. (2009), with the addition of Blink’s OLPC-X0 nodes. The latencies include

both hardware transitions, as well as the time to restart the OS and reset its IP address.

Definition 1. The blink state of each node i is defined by two parameters that determine its

duty cycle di, (i) length of the ON interval ton and (ii) length of the OFF interval toff , such

that di =
ton

ton+toff
· 100%

Definition 2. A blink policy defines the blink state of each node in a cluster, as well as a blink

schedule for each node.

The blink schedule defines the clock time at which a specified node transitions its

blink state to active, which in turn dictates the time at which the node turns on and

goes off. The schedule allows nodes to synchronize their blinking with one another,

where appropriate. For example, if node A frequently accesses disk files stored on node

B, the blink policy should specify a schedule such that the nodes synchronize their

active intervals. To illustrate how a data center employs blinking to regulate its aggregate

energy usage, consider a scenario where the energy supply is initially plentiful and there is

sufficient workload demand for all nodes. In this case, a feasible policy is to keep all nodes

continuously on.

Next assume that the power supply drops by 10%, and hence, the data center must

reduce its aggregate energy use by 10%. There are several blinking policies that are able

to satisfy this 10% drop. In the simplest case, 10% of the nodes are turned off, while the

remaining nodes continue to stay on. Alternatively, another blinking policy may specify a

duty cycle of di = 90% for every node i. There are also many ways to achieve a per-server

duty cycle of 90% by setting different ton and toff intervals, e.g., ton = 9 s and toff = 1 s

or ton = 900 ms and toff = 100 ms. Yet another policy may assign different blink states to

different nodes, e.g., depending on their loads, such that aggregate usage decreases by 10%.
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We refer to the first policy in our example above as an activation policy. An activation

policy only varies the number of active servers at each power level (Chase et al., 2001;

Tolia et al., 2008), such that some servers are active, while others are inactive; the energy

supply dictates the size of the active server set. In contrast, synchronous policies toggle all

nodes between the active and inactive state in tandem. In this case, all servers are active

for ton seconds and then inactive for toff seconds, such that total power usage over each

duty cycle matches the available power. Of course, since a synchronous policy toggles all

servers to active at the same time, it does not reduce peak power, which has a significant

impact on the cost of energy generation. An asynchronous policy may randomize the start

of each node’s active interval to decrease peak power without changing the average power

consumption across all nodes. In contrast to an asynchronous policy, an asymmetric policy

may blink different nodes at different rates, while ensuring the necessary change in the

energy footprint. For example, an asymmetric policy may be load-proportional and choose

per-node blink states that are a function of current load. Finally, a staggered blinking policy

is a type of asynchronous policy that staggers the start time of all nodes equally across each

blink interval. A staggered policy that reduces the energy footprint by blinking nodes in

proportion to the current load at each node is called staggered load-proportional policy.

Blink and blink policies are designed to cap power consumption of a server cluster to

the power supply. All of the policies above are equally effective at capping the average

power consumption for a variable power signal over any time interval. However, the choice

of the blink policy greatly impacts application performance. Although Blink’s design

is application-independent, applications should be modified and made blink-aware to

perform well on a blinking cluster. In this paper, we design blinking policies for two specific

types of distributed applications—BlinkCache, a blinking version of memcached and

GreenCache, a blinking version of multimedia cache. In designing these policies, we profile

application performance for a variety of blinking policies when subjected to different

changes in available power. Our goal in this paper is to demonstrate the feasibility of

running distributed applications while performing well under extreme power constraints;

optimizing performance for any specific workload and QOS demands is beyond the scope

of this paper.

BLINK PROTOTYPE
Blink is a combined hardware/software platform for developing and evaluating blinking

applications. This section describes our prototype’s hardware and software architecture in

detail.

Blink hardware platform
Blink’s current hardware platform consists of two primary components: (i) a low-power

server cluster that executes Blink-aware applications and (ii) a variable energy source

constructed using an array of micro wind turbines and solar panels. We use renewable

energy to expose the cluster to intermittent power constraints.
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Energy sources
We deployed an array of two wind turbines and two solar panels to power Blink. Each wind

turbine is a SunForce Air-X micro-turbine designed for home rooftop deployment, and

rated to produce up to 400 W in steady 28 mph winds. However, in our measurements,

each turbine generates approximately 40 W of power on windy days. Our solar energy

source uses Kyocera polycrystalline solar panels that are rated to produce a maximum of

65 W at 17.4 V under full sunlight. Although polycrystalline panels are known for their

efficiency, our measurements show that each panel only generates around 30 W of power in

full sunlight and much less in cloudy conditions.

We assume blinking systems use batteries for short-term energy storage and power

buffering. Modern data centers and racks already include UPS arrays to condition power

and tolerate short-term grid disruptions. We connect both renewable energy sources in our

deployment to a battery array that includes two rechargeable deep-cycle ResourcePower

Marine batteries with an aggregate capacity of 1,320 watt-hours at 12 V, which is capable of

powering our entire cluster continuously for over 14 h. However, in this paper we focus on

energy-neutral operation over short time intervals, and thus use the battery array only as

a small 5-minute buffer. We connect the energy sources to the battery pack using a TriStar

T-60 charge controller that provides over-charging circuitry. We deployed our renewable

energy sources on the roof of a campus building and used a HOBO U30 data logger to

gather detailed traces of current and voltage over a period of several months under a variety

of different weather conditions.

While our energy harvesting deployment is capable of directly powering Blink’s

server cluster, to enable controlled and repeatable experiments we leverage four Extech

programmable power supplies. We use the programmable power supplies, instead of the

harvesting deployment, to conduct repeatable experiments by replaying harvesting traces,

or emulating other intermittent power constraints, to charge our battery array.4

4 We are able to set the initial battery level
for each experiment using a separate
charge controller in load-control mode.

Since the battery’s voltage level indicates its current energy capacity, we require

sensors to measure and report it. We use a data acquisition device (DAQ) from National

Instruments to facilitate voltage measurement. As shown in Fig. 3, the prototype includes

two high-precision 5MOhm resistors between the battery terminals and employs the

DAQ to measure voltage across each resistor. We then use the value to compute the

instantaneous battery voltage, and hence, capacity. Figure 4 shows the empirically-derived

capacity of our prototype’s battery as a function of its voltage level. In addition to battery

voltage, we use DC current transducers to measure the current flowing from the energy

source into the battery, and the current flowing from the battery to the cluster. The

configuration allows Blink to accurately measure these values every second.

Low-power server cluster
Our Blink prototype uses a cluster of low-power server nodes. To match the energy

footprint of the cluster with the power output of our energy harvesting deployment

we construct our prototype from low-power nodes that use AMD Geode processor

motherboards. Each motherboard, which we scavenge from OLPC-XO laptops, consists of

a 433 MHz AMD Geode LX CPU, 256 MB RAM, a 1GB solid-state flash disk, and a Linksys
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Figure 3 Hardware architecture of the Blink prototype.

USB Ethernet NIC. Each node runs the Fedora Linux distribution with kernel version

2.6.25. We connect our 10 node cluster together using an energy-efficient switch (Netgear

GS116) that consumes 15 W. Each low-power node consumes a maximum of 8.6 W, and

together with the switch, the 10 node cluster has a total energy footprint of around 100 W.

An advantage of using XO motherboards is that they are specifically optimized for rapid

S3 transitions that are useful for blinking. Further, the motherboards use only 0.1 W in S3

and 8.6 W in S0 at full processor and network utilization. The wide power range in these

two states combined with the relatively low power usage in S3 makes these nodes an ideal

platform for demonstrating the efficacy of Blink’s energy optimizations.

Though XO motherboards are energy-efficient and consume little power even at full

utilization they are not suitable for running applications which require large persistent
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Figure 4 Empirically-measured battery capacity as a function of voltage for our deep-cycle battery. We
consider the battery empty below 12 V, since using it beyond this level will reduce its lifetime.

storage, such as a multimedia cache. The same design also scales to more powerful servers.

As a result, for our multimedia cache application, we design a Blink-aware cluster, but

we replace XO motherboards with Mac minis. Each Mac mini consists of a 2.4 GHz Intel

Core 2 Duo processors, 2 GB RAM, and a 40 GB flash-based SSD. We boot each Mac mini

in text mode and unload all unnecessary drivers in order to minimize the time it takes to

transition into S3. With the optimizations, the time to transition to and from ACPI’s S3

state on the Mac mini is one second, and the power consumption in S3 and S0 is 1 W and

25 W respectively.

Blink software architecture
Blink’s software architecture consists of an application-independent control plane that

combines a power management service with per-node access to energy and node-level

statistics. Blink-aware applications interact with the control plane using Blink APIs to

regulate their power consumption. The power management service consists of a power

manager daemon that runs on a gateway node and a power client daemon that runs on

each cluster node. The architecture separates mechanism from policy by exposing a single

simple interface for applications to control blinking for each cluster node.

The power manager daemon has access to the hardware sensors, described above, that

monitor the battery voltage and current flow. Each Blink power client also monitors

host-level metrics on each cluster node and reports them to the power manager. These

metrics include CPU utilization, network bandwidth, and the length of the current active

period. The power client exposes an internal RPC interface to the power manager that

allows it to set a node’s blinking pattern. To set the blinking pattern, the power client

uses the timer of the node’s real-time clock (RTC) to automatically sleep and wake

up, i.e., transition back to S0, at specific intervals. Thus, the power client is able to set

repetitive active and inactive durations. For example, the power manager may set a node to

repeatedly be active for 50 s and inactive for 10 s. In this case, the blink interval is 60 s with
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Table 2 Blink APIs for setting per-node blinking schedules.

Blinking interface

setDutyCycle(int nodeId, int onPercentage)

setBlinkInterval(int nodeId, int interval)

syncActiveTime(int node, long currentTime)

forceSleep(int nodeId, int duration)

Table 3 Blink’s measurement APIs that applications use to inform their blinking decisions.

Measurement interface

getBatteryCapacity()

getBatteryEnergy()

getChargeRate(int lastInterval)

getDischargeRate(int lastInterval)

getServerLoadStats(int nodeId)

the node being active 83% of the time and inactive 17% of the time. We assume that nodes

synchronize clocks using a protocol, such as NTP, to enable policies that coordinate blink

schedules across cluster nodes.

The impact of clock synchronization is negligible for our blink intervals at the

granularity of seconds, but may become an issue for blink intervals at the granularity of

milliseconds or less. Note that clock synchronization is not an issue for applications, such

as memcached, that do not perform inter-node communication. Transitioning between S0

and S3 incurs a latency that limits the length of the blink interval. Shorter blink intervals

are preferable since they allow each node to more closely match the available power, more

rapidly respond to changes in supply, and reduces the battery capacity necessary for short

term buffering. The XO motherboard yields S3 sleep latencies that range from roughly

200 ms to 2 s depending on the set of active devices and drivers (see Table 1). For instance,

since our USB NIC driver does not implement the ACPI reset resume function, we must

unload and load its driver when transitioning to and from S3. As a result, the latency for

XO motherboard is near 2 s. Similarly, with similar optimizations, the time to transition

to and from ACPI’s S3 state on the Mac mini is 1 s. Unfortunately, inefficient and incorrect

device drivers are commonplace, and represent one of the current drawbacks to blinking in

practice.

The Blink control plane exposes an RPC interface to integrate with external applications

as shown in Tables 2 and 3. Applications use these APIs to monitor input/output current

flow, battery voltage, host-level metrics and control per-node blinking patterns. Since

Blink is application-independent, the prototype does not report application-level metrics.

BLINKCACHE: BLINKING MEMCACHED
Memcached is a distributed in-memory cache for storing key-value pairs that significantly

reduces both the latency to access data objects and the load on persistent disk-backed

storage. Memcached has become a core component in Internet services that store vast
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amounts of user-generated content, with services maintaining dedicated clusters with 100s

to 1,000s of nodes (Ousterhout et al., 2009). Since end users interact with these services

in real-time through web portals, low-latency access to data is critical. High page load

latencies frustrate users and may cause them to stop generating new content (Nah, 2004),

which is undesirable since these services’ primary source of revenue derives from their

content, e.g., by selling targeted ads.

Memcached overview
Memcached’s design uses a simple and scalable client-server architecture, where clients

request a key value directly from a single candidate memcached server with the potential

to store it. Clients use a built-in mapping function to determine the IP address of this

candidate server. Initial versions of memcached determined the server using the function

Hash(Key)%NumServers, while the latest versions use the same consistent hashing

approach popularized in DHTs, such as Chord (Stoica et al., 2001). In either case, the key

values randomly map to nodes without regard to their temporal locality, i.e., popularity.

Since all clients use the same mapping function, they need not communicate with other

clients or servers to compute which server to check for a given key. Likewise, Memcached

servers respond to client requests (gets and sets) without communicating with other clients

or servers. This lack of inter-node communication enables Memcached to scale to large

clusters.

Importantly, clients maintain the state of the cache, including its consistency with

persistent storage. As a result, applications are explicitly written to use memcached by

(i) checking whether an object is resident in the cache before issuing any subsequent

queries, (ii) inserting a newly referenced object into the cache if it is not already resident,

and (iii) updating a cached object to reflect a corresponding update in persistent storage.

Each memcached server uses the Least Recently Used (LRU) replacement policy to evict

objects. One common example of a cached object is an HTML fragment generated from

the results of multiple queries to a relational database and other services. Since a single

HTTP request for many Internet services can result in over 100 internal, and potentially

sequential, requests to other services (DeCandia et al., 2007; Ousterhout et al., 2009), the

cache significantly decreases the latency to generate the HTML.

Access patterns and performance metrics
The popularity of web sites has long been known to follow a Zipf-like distribution (Breslau

et al., 1999; Wolman et al., 1999), where the fraction of all requests for the ith most

popular document is proportional to 1/iα for some constant α. Previous studies (Breslau

et al., 1999; Wolman et al., 1999) have shown that α is typically less than one for web

site popularity. The key characteristic of a Zipf-like distribution is its heavy tail, where

a significant fraction of requests are for relatively unpopular objects. We expect the

popularity of user-generated content for an Internet service to be similar to the broader

web, since, while some content may be highly popular, such as a celebrity’s Facebook page,

most users are primarily interested in either their own content or the content of close

friends and associates.
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Figure 5 The popularity rank, by number of fans, for all 20 million public group pages on Facebook
follows a Zipf-like distribution with α = 0.6.

As a test of our expectation, we rank all 20 million user-generated fan pages on Facebook

by their number of fans. We use the size of each page’s fan base as a rough approximation

of the popularity of its underlying data objects. Figure 5 confirms that the distribution

is Zipf-like with α approximately 0.6. Recent work also states that Facebook must store a

significant fraction of their data set in massive memcached clusters, i.e., on the order of

2,000 nodes, to achieve high hit rates, e.g., 25% of the entire data set to achieve a 96.5% hit

rate (Ousterhout et al., 2009). This characteristic is common for Zipf-like distributions with

low α values, since many requests for unpopular objects are inside the heavy tail. Thus,

the distribution roughly divides objects into two categories: the few highly popular objects

and the many relatively unpopular objects. As cache size increases, it stores a significant

fraction of objects that are unpopular compared to the few popular objects, but nearly

uniformly popular compared to each other. These mega-caches resemble a separate

high-performance storage tier (Ousterhout et al., 2009) for all data objects, rather than

a small cache for only the most popular data objects.

Before discussing different design alternatives for BlinkCache, we define our perfor-

mance metrics. The primary cache performance metric is hit ratio, or hit rate, which

represents the percentage of object requests that the cache services. A higher hit rate

indicates both a lower average latency per request, as well as lower load on the back-end

storage system. In addition to hit rate, we argue that fairness should be a secondary

performance metric for large memcached clusters that store many objects of equal

popularity. A fair cache distributes its benefits—low average request latency—equally

across objects. Caches are usually unfair, since their primary purpose is to achieve high hit

rates by storing more popular data at the expense of less popular data. However, fairness

increases in importance when there are many objects with a similar level of popularity,

as in today’s large memcached clusters storing data that follows a Zipf-like popularity
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distribution. An unfair cache results in a wide disparity in the average access latency for

these similarly popular objects, which ultimately translates to end-users receiving vastly

different levels of performance. We use the standard deviation of average request latency

per object as our measure of fairness. The lower the standard deviation the more fair the

policy, since this indicates that objects have average latencies that are closer to the mean.

BlinkCache design alternatives
We compare variants of three basic memcached policies for variable power constraints:

an activation policy, a synchronous policy, and an asymmetric load-proportional policy.

In all cases, any get request to an inactive server always registers as a cache miss, while

any set request is deferred until the node becomes active. We defer a discussion of the

implementation details using Blink to the next section.

• Activation policy. An activation policy ranks servers 1...N and always keeps the top

M servers active, where M is the maximum number of active servers the current power

level supports. We discuss multiple activation variants, including a static variant that

does not change the set of available servers in each client’s built-in mapping function to

reflect the current set of active servers, and a dynamic variant that does change the set.

We also discuss a key migration variant that continuously ranks the popularity of objects

and migrates them to servers 1...N in rank order.

• Synchronous policy. A synchronous policy keeps all servers active for time t and

inactive for time T − t for every interval T, where t is the maximum duration the

current power level supports and T is short enough to respond to power changes but

long enough to mitigate blink overhead. The policy does not change the set of available

servers in each client’s built-in mapping function, since all servers are active every

interval.

• Load-proportional policy. A load-proportional policy monitors the aggregate

popularity of objects Pi that each server i stores and keeps each server active for time

ti and inactive for time T − ti for every interval T. The policy computes each ti by

distributing the available power in the same proportion as the aggregate popularity Pi of

the servers. The load-proportional policy also migrates similarly popular objects to the

same server.

Activation policy
A straightforward approach to scaling memcached as power varies is to activate servers

when power is plentiful and deactivate servers when power is scarce. One simple method

for choosing which servers to activate is to rank them 1...N and activate and deactivate

them in order. Since, by default, memcached maps key values randomly to servers, our

policy for ranking servers and keys is random. In this case, a static policy variant that

does not change each client’s built-in mapping function to reflect the active server set

arbitrarily favors keys that happen to map to higher ranked servers, regardless of their

popularity. As a result, requests for objects that map to the top-ranked server will see a

significantly lower average latency than requests for objects that happen to map to the
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Figure 6 To explicitly control the mapping of keys to servers, we interpose always-active request
proxies between memcached clients and servers. The proxies are able to monitor per-key hit rates and
migrate similarly popular objects to the same nodes.

bottom-ranked server. One way to correct the problem is to dynamically change the

built-in client mapping function to only reflect the current set of active servers. With

constant power, dynamically changing the mapping function will result in a higher hit

rate since the most popular objects naturally shift to the current set of active servers. To

eliminate invalidation penalties and explicitly control the mapping of individual keys to

servers we interpose an always-active proxy between memcached clients and servers to

control the mapping (Fig. 6). In this design, clients issue requests to the proxy, which

maintains a hash table that stores the current mapping of keys to servers, issues requests to

the appropriate back-end server, and returns the result to the client.

Synchronous policy
The migration-enabled activation policy, described above, approaches the optimal policy

for maximizing the cache’s hit rate, since ranking servers and mapping objects to them

according to popularity rank makes the distributed cache operate like a centralized cache

that simply stores the most popular objects regardless of the cache’s size. We define optimal

as the hit rate for a centralized cache of the same size as the distributed Memcached

instance under the same workload. However, the policy is unfair for servers that store

similarly popular objects, since these servers should have equal rankings. The activation

policy is forced to arbitrarily choose a subset of these equally ranked servers to deactivate.

In this case, a synchronous policy is significantly more fair and results in nearly the

same hit rate as the optimal activation policy. To see why, consider the simple 4-node

memcached cluster in Fig. 7 with enough available power to currently activate half the

cluster. There is enough power to support either (i) our activation policy with migration

that keeps two nodes continuously active or (ii) a synchronous policy that keeps four nodes

active half the time but synchronously blinks them between the active and inactive state.
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Figure 7 Graphical depiction of a static/dynamic activation blinking policy (A), an activation blinking
policy with key migration (B), and a synchronous blinking policy (C).

For now we assume that all objects are equally popular, and compare the expected hit

rate and standard deviation of average latency across objects for both policies, assuming a

full cache can store all objects at full power on the 4 nodes. For the activation policy, the hit

rate is 50%, since it keeps two servers active and these servers store 50% of the objects. Since

all objects are equally popular, migration does not significantly change the results. In this

case, the standard deviation is 47.5 ms, assuming an estimate of 5 ms to access the cache

and 100 ms to regenerate the object from persistent storage. For a synchronous policy, the

hit rate is also 50%, since all 4 nodes are active half the time and these nodes store 100%

of the objects. However, the synchronous policy has a standard deviation of 0 ms, since all

objects have a 50% hit probability, if the access occurs when a node is active, and a 50%

miss probability, if the access occurs when a node is inactive. Rather than half the objects

having a 5 ms average latency and half having a 100 ms average latency, as with activation, a

synchronous policy ensures an average latency of 52.5 ms across all objects.

Note that the synchronous policy is ideal for a normal memcached cluster with a

mapping function that randomly maps keys to servers, since the aggregate popularity of

objects on each server will always be roughly equal. Further, unlike an activation policy that

uses the dynamic mapping function, the synchronous policy does not incur invalidation

penalties and is not arbitrarily unfair to keys on lower-ranked servers.

Load-proportional policy
A synchronous policy has the same hit rate as an activation policy when keys have

the same popularity, but is significantly more fair. However, an activation policy with

migration is capable of a significantly higher hit rate for highly skewed popularity

distributions. A proportional policy combines the advantages of both approaches for

Zipf-like distributions, where a few key values are highly popular but there is a heavy,

but significant, tail of similarly unpopular key values. As with our activation policy,
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Table 4 Summary of the best policy for a given performance metric and workload combination.

Metric Workload Best policy

Hit Rate Uniform Synchronous

Hit Rate Zipf Activation (Migration)

Fairness Uniform/Zipf Synchronous

Fairness + Hit Rate Zipf Load-proportional

a proportional policy ranks servers and uses a proxy to monitor object popularity and

migrate objects to servers in rank order. However, the policy distributes the available power

to servers in the same proportion as the aggregate popularity of their keys.

For example, assume that in our 4 server cluster after key migration the percentage of

total hits that go to the first server is 70%, the second server is 12%, the third server is

10%, and the fourth server is 8%. If there is currently 100 W of available power then the

first server ideally receives 70 W, the second server 12 W, the third server 10 W, and the

fourth server 8 W. These power levels then translate directly to active durations over each

interval T. In practice, if the first server’s maximum power is 50 W, then it will be active

the entire interval, since its maximum power is 70 W. The extra 20 W is distributed to the

remaining servers proportionally. If all servers have a maximum power of 50 W, the first

server receives 50 W, the second server receives 20 W, i.e., 40% of the remaining 50 W,

the third server receives 16.7 W, and the fourth server receives 13.3 W. These power levels

translate into the following active durations for a 60 s blink interval: 60 s, 24 s, 20 s, and 16

s, respectively.

The hit rate from a proportional policy is only slightly worse than the hit rate from

the optimal activation policy. In this example, we expect the hit rate from an activation

policy to be 85% of the maximum hit rate from a fully powered cluster, while we expect

the hit rate from a proportional policy to be 80.2%. However, the policy is more fair to

the 3 servers—12%, 10%, and 8%—with similar popularities, since each server receives

a similar total active duration. The Zipf distribution for a large memcached cluster has

similar attributes. A few servers store highly popular objects and will be active nearly 100%

of the time, while a large majority of the servers will store equally unpopular objects and

blink in proportion to their overall unpopularity.

Summary
Table 4 provides a summary of the best policy for each performance metric and workload

combination. In essence, an activation policy with key migration will always have the

highest hit rate. However, for distributions with equally popular objects, the synchronous

policy achieves a similar hit rate and is more fair. A load-proportional policy combines the

best attributes of both for Zipf-like distributions, which include a few popular objects but

many similarly unpopular objects. We evaluate these design alternatives in ‘Evaluation.’

GREENCACHE: BLINKING MULTIMEDIA CACHE
In the previous section we described how a stateless in-memory cache server can leverage

the blinking abstraction to perform well on intermittent power. In this section, we study
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the characteristics of a distributed multimedia cache, which serves videos requested by

clients, either by fetching them from the cache or retrieving them from backend servers.

We assume the cache is write-through in that it stores cached videos on disk. A distributed

multimedia cache is different than Memcached in many ways—(a) it is not a key-value

storage system and, unlike Memcached, it streams data to multimedia players, (b) it stores

data on persistent storage and its data size is often much larger than that of Memcached,

and (c) like any streaming server it can push data in advance to multimedia players

to minimize buffering time and enhance viewers’ experience. In our analysis, we use

traces of YouTube traffic as our data source, since YouTube is one of the most popular

user-generated video content site and Google deploys 1,000s of servers to serve YouTube

requests made by users all around the world.

Multimedia cache overview
Multimedia caches are widely used to reduce backhaul bandwidth usage and improve

viewers’ experience by reducing buffering time or access latency. Apart from traditional

multimedia servers, network operators have also started deploying multimedia caches at

cellular towers to cater for the growing demand of multimedia content from smartphone

users. Traditionally, network operators have deployed caches only at centralized locations,

such as operator peering points, in part, for both simplicity and ease of management (Xu

et al., 2011). However, researchers and startups have recently recognized the benefit of

placing caches closer to edge (Xu et al., 2011; Stoke Solutions, 2011). Co-locating server

caches closer to cell towers reduces both access latency, by eliminating the need to route

requests for cached data through a distant peering point, and backhaul bandwidth usage

from the cell tower to the peering point. Caches co-located with cell towers primarily

target multimedia data, since it consumes the largest fraction of bandwidth and is

latency-sensitive.

We study the design of GreenCache in the context of such a distributed multimedia

cache for cellular towers. Many of these cellular towers, especially in developing countries,

are located in remote areas without reliable access to power. As a result, renewable energy

sources have been proposed to power these cellular towers (Guay, 2012; Balshe, 2011). To

handle intermittency in the power supply, we assume a cache architecture that comprises

of a number of low-power servers, since a single large cache is not energy-proportional,

and, thus, not well-suited to operating off intermittent renewable energy sources. The

advantage of a distributed multimedia cache is that it allows the cache size to scale up and

down based on available power. However, it introduces a new complication: if servers are

inactive due to power shortages by renewables then the data cached on them becomes

unavailable. If data resides on an inactive server, the client must either wait until the server

is active, e.g., there is enough power, or retrieve the already cached data again from the

origin server.

In this case, the blinking abstraction enables the cache to provide service, albeit at

degraded performance, during shortfall periods. In essence, blinking provides a cache

with new options in its design space. Rather than having a small cache composed of the
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Figure 8 The top part of the figure shows a potential streaming schedule for a blinking node while the
bottom half shows the smooth play out with is achieved with the aid of a client-side buffer.

number of always-on servers the available power can sustain, blinking provides the option

of having a much larger cache composed of servers that are active for only a fraction

of time each blink interval, e.g., active for 10 s during each minute interval. The use

of blinking raises new challenges in multimedia cache design. The main challenge is

to ensure smooth uninterrupted video playback even while blinking. Doing so implies

that caches have to stream additional data during their active periods to compensate for

lack of network streaming during sleep periods. Further, end-clients will need to employ

additional client-side buffers and might see higher startup latencies.

Since multimedia applications are very sensitive to fluctuation in network bandwidth

that might cause delayed data delivery at the client, most applications prefer that video

players employ a buffer to smooth out such fluctuations and provide an uninterrupted,

error free play out of the data. This buffer, which already exists for most multimedia

applications on the client side, integrates well into the blinking approach since it also allows

the cache to bridge outage times in individual cache servers, as shown in Fig. 8. A blinking

cache will stream additional chunks when active, which are buffered at the client. As shown

in this figure, the player is then able to play the video smoothly and masks interruptions

from the viewer as long as it gets the next chunk of data before the previous chunk has

finished playing.

Finally, in a typical cell tower or 3G/4G/WiMAX scenario the downstream bandwidth

(∼30–40 Mbps) is much less than the bandwidth a cache server can provide, which is
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generally limited by its network card and disk I/O. So, the cache server can potentially

reduce its energy consumption by sending data at its full capacity for a fraction of a time

interval (usually few seconds) and going to a low-power state for the remaining period

of the time interval, as shown in Fig. 8. In essence, the server could employ the blinking

abstraction to reduce its energy footprint while still satisfying the downstream bandwidth

requirement of the cell tower or WiMAX station. Moreover, blinking facilitates a cache to

employ more servers than it can keep active with the available power, and thus provides an

opportunity to reduce server load and bandwidth usage.

The primary drawback of a blinking cache is that it stalls a request if the requested video

is not currently available on an active server. If a client requests a video that is present

on an inactive server, the cache can either get the video from the back-end server or the

client pauses play out until the inactive server becomes active. While getting the video from

the back-end server, instead of waiting for the inactive server to become active, reduces

the buffering time, it increases the bandwidth cost. As we describe later in this section,

GreenCache uses a low-power always-on proxy and staggered load-proportional blinking

policy to reduce buffering time while sending requests to back-end servers only if data is

not available in the cache.

YouTube trace analysis
To inform the design of GreenCache based on the characteristics of multimedia traffic and

viewer behavior, we analyze a network trace that was obtained by monitoring YouTube

traffic entering and leaving a campus network at the University of Connecticut. The

network trace is collected with the aid of a monitoring device consisting of PC with a

Data Acquisition and Generation (DAG) card (Endace, 2011), which can capture Ethernet

frames. The device is located at a campus network gateway, which allows it to capture all

traffic to and from the campus network. It was configured to capture a fixed length header

of all HTTP packets going to and coming from the YouTube domain. The monitoring

period for this trace was 72 h. This trace contains a total of 105,339 requests for YouTube

videos out of which ∼80% of the video requests are single requests which leaves about 20%

of the multiple requests to take advantage of caching of the requested videos. We would like

to point out that a similar caching potential (24% in this case) has been reported in a more

global study of 3G networks traffic analysis by Erman et al. (2011).

Figure 9 shows the popularity distribution of the 100 most popular videos, which is

obtained based on the user requests recorded in the trace. This figure only shows the 100

most popular videos since the trace contains many videos with a very low popularity (<10

requests) and we wanted to depict the distribution of the most popular videos in more

detail. The data obtained from the analysis of the trace shows that, despite the very long tail

popularity distribution, caching can have an impact on the performance of such a video

distribution system.

In earlier work (Khemmarart et al., 2011), we have shown that, not only caching but also

the prefetching of prefixes of videos that are shown on the related video list of a YouTube

video page can improve the viewers experience of watching videos. Further analysis of the
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Figure 9 Video popularity (100 out of 105,339).

trace revealed that 47,986 request out of the 105,339 had the tag related video (∼45%),

which indicates that these videos have been chosen by viewers from the related video list

that is shown on each YouTube video’s web page. In addition to identifying videos that are

selected from the related list, we also determine the position on the related list the video

was selected from and show the result in Fig. 10A. It shows that users tend to request from

the top 10 videos shown on the related list of a video, which accounts for 80% of the related

video requests in the trace. This data shows that, prefetching the prefixes of the top 10

videos shown on the related list of a currently watched video can significantly increase

viewer’s experience, since the initial part can be streamed immediately from a location

close to the client. Based on these results, we decided to evaluate a blinking multimedia

cache that performs both, traditional caching, and prefix prefetching for the top 10 videos

on the related video list.

We also analyze the trace to investigate if viewers switch to a new video before they

completely finish watching the current video. In order to analyze this behaviour, we

look into the timestamps of a user requesting two consecutive videos. We calculate the

difference of these timestamps and compare it with the total length of the first video

requested to determine if the user has switched between videos before the previous video is

completely viewed.

Figure 10B shows the number of occurrences (in percent out of the total number of

videos watched) a video is watched for x% of its total length. This result shows that only

in 45% of the cases videos are watched completely (also this number is similar to the

global study performed by Erman et al. (2011)). In all other cases only part of the video

is watched, with the majority of these cases (∼40%) falling in the 0–20% viewing session

length. This result let us to the decision to divide a video into equal-sized chunks, which

allows for the storage of different chunks that belong to a single video on different nodes

of the cache cluster. In ‘Minimizing bandwidth cost,’ we describe how the chunk size is
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Figure 10 YouTube trace related videos and switch time analysis. (A) Related video position analysis.
(B) Video switching time analysis.

Figure 11 GreenCache architecture.

determined and how chunking a video can reduce the uplink bandwidth usage if used on a

blinking multimedia cache cluster.

GreenCache design
Figure 11 depicts GreenCache’s architecture, which consists of a proxy and several cache

servers. The proxy maintains a video→chunk mapping and a chunk→node mapping,
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while also controlling chunk server placement and eviction. Clients, e.g., web browsers,

connect to video servers through the proxy, which fetches the requisite data from one or

more of its cache servers, if the data is resident in the cache. If the data is not resident, the

proxy forwards the request to the host, i.e., backend server. The proxy stores metadata to

access the cache in its own memory, while video chunks reside on stable storage on each

cache server.

Similar to BlinkCache, GreenCache also includes a power manager, that monitors

available power and energy stored in a battery using hardware sensors, e.g., a voltage

logger and current transducer. The power manager implements various blinking policies

to control nodes’ active and inactive intervals to match the cache’s power usage to the

available power. The power manager communicates with a power client running on each

cache server to set the start time and active period every blink interval. The power client

activates the node at the start time and deactivates the node after the active period every

blink interval, and thus controls node-level power usage by transitioning the node between

active and inactive states.

As discussed earlier, the primary objective of a multimedia cache is to reduce buffering

(or pause) time at clients and the bandwidth usage between the cache and origin servers.

Next, we describe GreenCache’s techniques to both reduce bandwidth usage to the backend

origin servers, while also minimizing buffering (or pause) time at the client.

Minimizing bandwidth cost
As Fig. 9 indicates, all videos are not equally popular. Instead, a small number of videos

exhibit a significantly higher popularity than others. Similar to other multimedia caches,

GreenCache has limited storage capacity, requiring it to evict older videos to cache new

videos. An eviction strategy that minimizes the bandwidth usage each interval will evict the

least popular videos during the next interval. However, such a strategy is only possible if

the cache knows the popularity of each video in advance. To approximate a video’s future

popularity, GreenCache maintains each video’s popularity as an exponentially-weighted

moving average of a video’s accesses, updated every blink interval. The cache then evicts the

least popular videos if it requires space to store new videos.

As shown in Fig. 10B, most videos are not watched completely most of the time. In fact,

the figure shows that users of YouTube watch less than 45% of the videos to completion.

In addition, users might watch the last half of a popular video less often than the first

half of an unpopular video. To account for discrepancies in the popularity of different

segments of a video, GreenCache divides a video into multiple chunks, where each chunk’s

playtime is equal in length to the blink interval. Similar to entire videos, GreenCache tracks

chunk-level popularity as an exponentially weighted moving average of a chunk’s accesses.

Formally, we can express the popularity of the ith chunk after the tth interval as:

Popularityi
t
= αAi

t
+ (1 − α)Popularityi

t−1. (1)

Ai
t represents the total number of accesses of the ith chunk in the tth interval, and α is

a configurable parameter that weights the impact of past accesses. Further, GreenCache
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manages videos at the chunk level, and evicts least popular chunks, from potentially

different videos, to store a new chunk. As a result, GreenCache does not need to request

chunks from the backend origin servers if the chunk is cached at one or more cache servers.

Reducing buffering time
As discussed earlier, blinking increases buffering time up to a blink interval, if the requested

chunk is not present on an active server. The proxy could mask the buffering time from

a client if the client receives a chunk before it has finished playing the previous chunk.

Assuming sufficient energy and bandwidth, the proxy can get a cached chunk from a cache

server within a blink interval, since all servers become active for a period during each

blink interval. As a result, a user will not experience pauses or buffering while watching

a video in sequence, since the proxy has enough time to send subsequent chunks (after

the first chunk) either from the cache or the origin server before the previous chunk

finishes playing, e.g., within a blink interval. However, the initial buffering time for the

first chunk could be as long as an entire blink interval, since a request could arrive just

after the cache server storing the first chunk becomes inactive. Thus, to reduce the initial

buffering time for a video, the proxy replicates the first chunk of cached videos on all

cache servers. However, replication alone does not reduce the buffering time if all servers

blink synchronously, i.e., become active at the same time every blink interval. As a result,

as discussed next, GreenCache employs a staggered load-proportional blinking policy to

maximize the probability of at least one cache server being active at any power level.

Staggered load-proportional blinking
As discussed above, we replicate the first chunk of each cached video on all cache servers

in order to reduce initial buffering time. To minimize the overlap in node active intervals

and maximize the probability of at least one active node at all power levels, GreenCache

staggers start times of all nodes across each blink interval. Thus, every blink interval, e.g.,

60 s, each server is active for a different period of time, as well as a different duration

(discussed below). At any instant, a different set of servers (and their cached data) is

available for clients. Since at low power the proxy might not be able to buffer all subsequent

chunks from blinking nodes, clients might face delays or buffering while watching videos

(after initially starting them).

To reduce the intermediate buffering for popular videos, GreenCache also groups

popular chunks together and assigns more power to nodes storing popular chunks than

nodes storing unpopular chunks. Thus, nodes storing popular chunks are active for

a longer duration each blink interval. GreenCache ranks all servers from 1...N, with

1 being the most popular and N being the least popular node. The proxy monitors

chunk popularity and migrates chunks to servers in rank order. Furthermore, the proxy

distributes the available power to nodes in proportion to the aggregate popularity of their

chunks. Formally, active period for the ith node, assuming negligible power for inactive

state, could be expressed as

Activei =
BI ∗ P ∗ Popularityi

MP ∗
n

k=1Popularityi
. (2)
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Figure 12 Staggered load-proportional blinking.

BI represents the length of a blink interval, Popularityi represents the aggregate

popularity of all chunks mapped on the ith node, P denotes the available power, and MP

is the maximum power required by an active node. Additionally, start times of nodes

are staggered in a way that minimizes the unavailability of first chunks, i.e., minimizes

the period when none of the nodes are active, every blink interval. Figure 12 depicts

an example of staggered load-proportional blinking for five nodes. Note that since the

staggered load-proportional policy assigns active intervals in proportion to servers’

popularity, it does not create an unbalanced load on the cache servers.

Prefetching recommended videos
Most popular video sites display a recommended list of videos to users. For instance,

YouTube recommends a list of twenty videos which generally depends on the current video

being watched, the user’s location, and other factors including past viewing history. The

trace analysis of YouTube videos, as discussed above, indicates that users tend to select the

next video from recommended videos ∼45% of the time. In addition, a user selects a video

at the top more often than a video further down in the recommended list. In fact, Fig. 10A

shows that nearly 55% of the time a user selects the next video from top five videos in the

recommended list. To further reduce initial buffering time the proxy prefetches the first

chunk of top five videos in the recommended list, if these chunks are not already present

in the cache. The proxy fetches subsequent chunks of the video when the user requests the

video next.

IMPLEMENTATION
We use the Blink’s hardware and software prototype from ‘Blink Prototype’ to experiment

with BlinkCache and GreenCache. We use the low-power server cluster of XO mother-

boards for BlinkCache, and that of Mac minis for GreenCache.

BlinkCache implementation
We run an unmodified memcached server and an instance of Blink’s power client on

each BlinkCache node. We also wrote a memcached client workload generator to issue

Sharma et al. (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.34 26/50

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.34


key requests at a configurable but steady rate according to either a Zipf popularity

distribution, parameterized by α, or a uniform popularity distribution. As in a typical

application, the workload generator fetches any data not resident in the cache from a

MySQL database and places it in the cache. Since we assume the MySQL server provides

always-available persistent storage, it runs off the power grid and not variable power.

We modify magent, a publicly available memcached proxy (http://code.google.com/

p/memagent/), to implement the design alternatives in the previous section, including

table-based key mapping and popularity-based key migration. Our modifications are not

complex: we added or changed only 300 lines of code to implement all of the BlinkCache

design variants from ‘Blink Prototype.’ Since all requests pass through the proxy, it is

able to monitor key popularity. The proxy controls blinking by interacting with Blink’s

power manager, which in our setup runs on the same node, to monitor the available

power and battery level and set per-node blinking patterns. We also use the proxy for

experiments with memcached’s default hash-based key mappings, rather than modifying

the memcached client. Since our always-on proxy is also subject to intermittent power

constraints, we run it on a low-power (5 W) embedded SheevaPlug with a 1.2 GHz ARM

CPU and 512 MB of memory.

GreenCache implementation
As discussed in ‘GreenCache: Blinking Multimedia Cache,’ we study the GreenCache’s

design in the context of a cellular tower powered by solar and wind energy. In our

prototype we use a WiMAX base station to emulate the cellular tower. To analyze the

blinking performance of GreenCache, we implement a GreenCache prototype in Java,

including a proxy (∼1,500 LOC), cache server (∼500 LOC), power manager (∼200 LOC),

and power client (∼150 LOC). Mobile clients connect to the Internet through a wireless

base station, such as a cell tower or WiMAX base station, which is configured to route all

multimedia requests to the proxy. While the power manager and proxy are functionally

separate and communicate via well-defined APIs, our prototype run both modules on the

same node. Our prototype does not require any modification in the base station or mobile

clients. Both cache server and power client run together on each blinking node.

Our prototype includes a full implementation of GreenCache, including the staggered

load-proportional blinking policy, load-proportional chunk layout, prefetching, video

chunking, chunk eviction and chunk migration. The proxy uses a Java Hashtable to

map videos to chunks and their locations, e.g., via their IP address, and maintains their

status, e.g., present or evicted. Since our prototype has a modular implementation, we

are able to experiment with other blinking policies and chunk layouts. We implement the

activation and proportional policies similar to the memcached application as described

in ‘BlinkCache: Blinking Memcached’ and compare with GreenCache’s staggered load-

proportional policy. We also implement a randomized chunk layout and the Least Recently

Used (LRU) cache eviction policy to compare with the proposed load-proportional layout

and popularity based eviction policy, respectively.

Sharma et al. (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.34 27/50

https://peerj.com/computer-science/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://code.google.com/p/memagent/
http://dx.doi.org/10.7717/peerj-cs.34


As discussed in ‘Blink Prototype,’ we use a cluster of ten Mac minis for GreenCache.

We use one Mac mini to run the proxy and power manager, whereas we run a cache server

and power client on other Mac minis. The proxy connects to a WiMAX base station (NEC

Rel.1 802.16eBS) through the switch. We use a Linux laptop with a Teletonika USB WiMAX

modem to run as a client. We also use a separate server to emulate multiple WiMAX clients.

Our emulator limits the wireless bandwidth, in the same way as observed by the WiMAX

card, and plays the YouTube trace described below. The WiMAX base station is operational

and located on the roof of a tall building on the UMass campus. However, the station

is currently dedicated for research purposes and is not open to the general public. Since

GreenCache requires one node, running the proxy and power manager, the switch, and

WiMAX base station to be active all the time, its minimum power consumption is 46 W, or

17% of its maximum power consumption.

To experiment with a wide range of video traffic, we wrote a mobile client emulator in

Java, which replays YouTube traces. For each video request in the trace file, the emulator

creates a new thread at the specified time to play the video as per the specified duration.

In addition, the emulator also generates synthetic video requests based on various

configurable settings, such as available bandwidth, popularity distribution of videos, e.g., a

Zipf parameter, viewing length distribution, and recommended list distribution.

Blink emulator
To study how the BlinkCache and GreenCache design scales with the cluster size we write

an emulator that emulates a server cluster. The emulator takes the number of servers,

servers’ parameters (e.g., RAM, IP Address, Port), network bandwidth, and the application

name as input parameters, and starts as many processes as the number of servers. Each

process emulates a node in the cluster, and applications running on that node are started

in separate threads in the process. For example, a blinking node in BlinkCache is emulated

by a process with two threads—one thread runs a power client while the other runs a

memcached server. The power manager takes the power trace from our field deployment

and scales up the trace to bring the average power at 50% of the power necessary to run all

nodes concurrently. To emulate blinking of a node the power client sends the process to the

sleep state and active state as directed by the power manager.

We run our Blink emulator on a Mac mini running Linux kernel 2.6.38 with 2.4 GHz

Intel Core 2 Duo processor and 8 GB of RAM. The emulator starts up to 1,000 processes

to emulate 1,000 blinking nodes. We use benchmark results from our low-power server

cluster to set application-level configuration parameters, such as request rate, access

latency, transition latency, power consumption, zipf parameter, servers to proxy ratio

etc., for applications running on the Blink emulator. As in our real cluster all modules

and applications communicate over TCP/IP. Further, to run a memcached server in a

thread, rather than in a process, we write a small memcached emulator that emulates basic

operations (single-key get and put) of Memcached with similar latencies as observed with a

real memcached server in our evaluation (‘Evaluation’).
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Power signal
We program our power supplies to replay solar and wind traces from our field deployment

of solar panels and wind turbines. We also experiment with both multiple steady

and oscillating power levels as a percentage, where 0% oscillation holds power steady

throughout the experiment and N% oscillation varies power between (45 + 0.45N)% and

(45 − 0.45N)% every five minutes. We combine traces from our solar/wind deployment,

and set a minimum power level equal to the power necessary to operate the always-active

components. We compress our renewable power signal to execute three days in three hours,

and scale the average power to 50% of the cluster’s maximum power.

EVALUATION
We evaluate BlinkCache and GreenCache on our small-scale Blink prototype from ‘Blink

Prototype’. The purpose of our evaluation is not to maximize the performance of a

particular deployment of our applications—memcached and multimedia cache—or

improve on the performance of the custom deployments common in industry. Instead,

our goal is to explore the effects of churn on the applications caused by power fluctuations

for different design alternatives. Our results will differ across platforms according to the

specific blink interval, CPU speed, and network latency and bandwidth of the servers

and the network. Since our prototype uses low-power CPUs and motherboards, the

request latencies we observe in our prototype are not representative of those found in

high performance servers.

BlinkCache evaluation
We first use our workload generator to benchmark the performance of each blinking policy

for both Zipf-like and uniform popularity distributions at multiple power levels with

varying levels of oscillation. We then demonstrate the performance for an example web

application—tag clouds in GlassFish—using realistic traces from our energy harvesting

deployment that have varying power and oscillation levels. Unless otherwise noted, in

our experiments, we use moderate-size objects of 10 KB, Facebook-like Zipf α values of

0.6, and memcached’s consistent hashing mapping function. Each experiment represents

a half-hour trace, we configure each memcached server with a 100 MB cache to provide

an aggregate cache size of 1 GB, and we use our programmable power supply to drive

each power trace. Since each node has only 256 MB of memory, we scale our workloads

appropriately for evaluation.

Benchmarks
We measure the maximum power of each node, at 100% CPU and network utilization,

in S0 to be 8.6 W and its minimum power in S3 to be 0.2 W. We use these values in the

proxy to compute the length of active and inactive periods to cap power consumption at a

specific level. We also measure the impact of our node’s near 2 s transition latency for blink

intervals T between 10 s and 2 min. Figure 13 shows the results for a duty cycle of 50%. In

this case, the blinking interval must be over 40 s before average power over the interval falls

below 55% of the node’s maximum power, as we expect. The result shows that on-demand
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Figure 13 The near 2 s latency to transition into and out of S3 in our prototype discourages blinking
intervals shorter than roughly 40 s. With a 50% duty cycle we expect to operate at 50% full power, but
with a blink interval of less than 10 s we operate near 100% full power.

transitions that occur whenever work arrives or departs are not practical in our prototype.

Further, even blinking intervals as high as 10 s impose significant power inefficiencies.

As a result, we use a blinking interval of 60 s for our experiments. Our 60 s blink interval

is due solely to limitations in the Blink prototype. Note that there is an opportunity to

significantly reduce blink intervals through both hardware and software optimizations.

Since server clusters do not typically leverage ACPI’s S3 state, there has been little incentive

to optimize its transition latency.

Next, we determine a baseline workload intensity for memcached, since, for certain

request rates and key sizes, the proxy or the switch becomes a bottleneck. In our

experiments, we use a steady request rate (1,000 get requests/s) that is less than the

maximum request rate possible once the proxy or switch becomes a bottleneck. Note

that our results, which focus on hit rates, are a function of the popularity of objects rather

than the distribution of request inter-arrival times. Our goal is to evaluate how blinking

affects the relative hit rates between the policies, and not the performance limitations

of our particular set of low-power components. Figure 14 demonstrates the maximum

performance, in terms of total throughput and request latency for different key values

sizes, of an unmodified memcached server, our memcached proxy, and a MySQL server.

As expected, the memcached server provides an order of magnitude higher throughput

and lower request latency than MySQL. Further, our proxy implementation imposes

only a modest overhead to both throughput and latency, although the latency impact of

proxy-based redirections will be greater on faster CPUs since less relative request time is

spent in the OS and network. Our subsequent experiments focus on request hit rates rather

than request latencies, since latencies vary significantly across platforms and workloads.

Further, the wide disparity in latency between serving a request from memory and

serving it from disk would show a larger, and potentially unfair, advantage for a blinking
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Figure 14 Maximum throughput (A) and latency (B) for a dedicated memcached server, our mem-
cached proxy, and a MySQL server. Our proxy imposes only a modest overhead compared with a
dedicated memcached server. (A) Throughput. (B) Latency.

system. Thus, we consider hit rate a better metric than latency for evaluating a blinking

memcached instance.

Activation blinking and thrashing
An activation policy for an unmodified version of memcached must choose whether or

not to alter the hash-based mapping function as it activates and deactivates servers. For

constant power, a dynamic mapping function that always reflects the currently active set

of servers should provides the best hit rate, regardless of the popularity distribution, since

applications will be able to insert the most popular keys on one of the active servers. Figure

15A demonstrates this point for a workload with a Zipf popularity distribution (α = 0.6),

and shows the hit rates for both static and dynamic activation variants at multiple constant

power levels. While at high power levels the approaches have similar hit rates, as power

level decreases, we see that the static variant incurs a higher penalty under constant power.

However, Fig. 15B demonstrates that the opposite is true for highly variable power. The

figure reports hit rates for different levels of power oscillation, where the average power for

each experiment is 45% of the power necessary to run all nodes concurrently. The x-axis

indicates oscillation level as a percentage, such that 0% oscillation holds power steady

throughout the experiment and N% oscillation varies power between (45 + 0.45N)% and

(45 − 0.45N)% every 5 min.

We see that dynamic changes in the active server set of memcached’s hash-based

mapping function incur an invalidation penalty. Since the invalidation penalty does

not occur when memcached does not change the mapping function, the static variant

provides a significantly better hit rate as the oscillations increase. Although not shown

here, the difference with the original modulo approach is much greater, since each change

flushes nearly the entire cache. The hash-based mapping function forces a choice between

performing well under constant power or performing well under variable power. A

table-based approach that uses our proxy to explicitly map keys to servers and uses key

migration to increase the priority of popular keys performs better in both scenarios. That

is, the approach does not incur invalidation penalties under continuously variable power,

or result in low hit rates under constant power, as also shown in Figs. 15A and 15B. Note
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Figure 15 Hit rate with activation policy under constant and oscillating power for a Zipf popularity
distribution. (A) Constant power. (B) Variable power.

Figure 16 Comparison of fairness and hit rate with synchronous policy and activation policy for a
uniform popularity distribution. (A) Standard deviation with constant power. (B) Hit rate with constant
power.

that oscillation has no impact on other policies, e.g., those using key migration or the

synchronous policy.

Synchronous blinking and fairness
While the activation policy with key migration results in the highest hit rate overall, it is

unfair when many servers store equally popular objects since the policy must choose some

subset of equally popular servers to deactivate. Figure 16A quantifies the fairness of the

dynamic activation policy, the activation policy with key migration, and the synchronous

policy, as a function of standard deviation in average per-object latency, at multiple

constant power levels for a uniform popularity distribution where all objects are equally

popular. Note that for distributions where all objects are equally popular, key migration is

not necessary and is equivalent to using the static variant of hash-based mapping.

The synchronous policy is roughly 2X more fair than the activation policy with key

migration at all power levels. While the dynamic hash-based mapping is nearly as fair as

the synchronous policy, it has a worse hit rate, especially in high-power scenarios, as shown

in Fig. 16B. Thus, the synchronous policy, which is more fair and provides lower average

latency, is a better choice than any variant of the activation policy for uniform popularity
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Figure 17 Comparison of fairness and hit rate with load proportional policy, synchronous policy and
activation policy for a Zipf popularity distribution. (A) Standard deviation with constant power. (B)
Hit rate with constant power.

distributions. Note that the key popularity distribution across servers in every memcached

cluster that uses a hash-based mapping function is uniform, since keys map to servers

randomly. Thus, the synchronous policy is the best choice for a heavily-loaded memcached

cluster that cannot tolerate the throughput penalty of using proxies.

Balancing performance and fairness
Activation with key migration results in the maximum hit rate for skewed popularity

distributions where some objects are significantly more popular than others, while the

synchronous policy results in the best overall performance, in terms of both hit rate and

fairness, for uniform popularity distributions. The proportional policy combines the

advantages of both and works well for Zipf-like distributions with a few popular objects

but a long tail of similarly (un)popular objects, since the long heavy tail in isolation is

similar to the uniform distribution. Figure 17B shows the hit rate for the proportional

policy, the activation policy with migration, and the synchronous policy for a Zipf

popularity distribution with α = 0.6 at different power levels. The synchronous policy

performs poorly, especially at low power levels, in this experiment, since it does not treat

popular objects different than unpopular objects.

However, the proportional policy attains nearly the same hit rate as the activation

policy at high power levels, since it also prioritizes popular objects over unpopular objects.

Even at low power levels its hit rate is over 60% of the activation policy’s hit rate. Further,

the proportional policy is significantly more fair to the many unpopular objects in the

distribution. Figure 17A reports fairness, in terms of the standard deviation in per-object

latency, at different power levels for the unpopular keys, i.e., keys ranked in the bottom

80th percentile of the distribution. The activation policy’s unfairness is nearly 4X worse at

low power levels. Thus, the proportional policy strikes a balance between performance and

fairness when compared against both the synchronous and activation policies.

Finally, Fig. 18 shows how the S3 transition overhead affects our results at a moderate

power level. The figure shows that the overhead has only a modest effect on the

load-proportional policy’s hit rate. The overhead does not affect the relative fairness of

the policies. Note that all of our previous experiments use our prototype’s 2 s transition
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Figure 18 As S3 transition overhead increases, the hit rate from the load-proportional policy de-
creases relative to the activation policy with key migration for a Zipf distribution at a moderate power
level.

overhead. A shorter transition overhead would improve our results, and even a longer

transition would show some, albeit lesser, benefits.

Case study: tag clouds in glassfish
While our prior experiments compare our blinking policies for different power and

oscillation levels, we also conduct an application case study using traces from our energy

harvesting deployment. The experiment provides a glimpse of the performance tradeoffs

for realistic power signals. GlassFish is an open source Java application server from

Sun, which includes a simple example application that reuses parts of the Java PetStore

multi-tier web application, used in prior research, e.g., Cohen et al. (2004), to create tag

clouds for pets. Tag clouds are a set of weighted tags that visually represent the most

popular words on a web page. We modify the default web application to generate HTML

for per-user tag cloud pages and cache them in memcached. The data to construct each

HTML page comes from a series of 20 sequential requests to a MySQL database.

For these experiments, we measure the latency to load user tag cloud pages, which

incorporates MySQL and HTML regeneration latencies whenever HTML pages are not

resident in the cache. The MySQL latency for our simple table-based data is typically

30 ms per database query. While page load latency follows the same trend as hit rate, it

provides a better application-level view of the impact of different policies. Figure 19B

shows the average latency to load user web pages across 40,000 users for our three different

policies—activation with key migration, proportional, and synchronous—for a combined

solar and wind trace, assuming the popularity of each user’s tag cloud page follows a Zipf

distribution with α = 0.6. We derive the power signal, shown in Fig. 19A, by compressing a

3-day energy harvesting trace to 3 h.

As expected, the activation policy with key migration and the load-proportional policy

exhibit comparable page load latencies at most points in the trace. For this trace, the
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Figure 19 Power signal from a combined wind/solar deployment (A) and average page load latency
for that power signal (B). (A) Power. (B) Page Load Latency.

load-proportional policy is within 15% of the activation policy’s hit rate. The activation

policy is slightly better at low energy levels, since it tends to strictly ensure that more

popular content is always cached. Also as expected, the synchronous policy tends to

perform poorly across all power levels. Also as expected, we measure the standard

deviation of page load latencies for the load-proportional policy to be within 2% to the

synchronous policy for the vast majority, i.e., bottom 80%, of the equally unpopular

objects.

BlinkCache scalability
To see how our BlinkCache design performs for a large server cluster we use the Blink em-

ulator from ‘Implementation’ to emulate a cluster of 1,000 nodes. We use the benchmark

results from above to set the throughput, access latency, and power consumption of servers.

As described above, each proxy can serve 10 memcached servers and give a maximum

throughput of 1,000 requests/s. So, assuming the same throughput per proxy we select 100

proxies for our 1,000 node cluster which can give an aggregate maximum throughput of

100,000 requests/s. We use the same memcached client and request trace that we used for

the evaluation of our real cluster.

As the number of proxies depend on the total number of active servers the activation

policy activates/deactivates a number of proxies as it varies the number of active servers.

To avoid migration of the key→server mappings from an inactive proxy to active ones

we store all key→server mappings on each proxy. As each mapping requires only 20

bytes the overhead of storing all is minimal. A memcached client uses a simple mapping

function—Hash(Key)%NumberProxies—to map a key to one of the proxies. If the number

of active proxies changes a key previously mapped to a proxy might now map to a different

proxy, which might not have the correct key→server mapping for that key. So, to reduce

the overhead we sync the hash table (key→server mappings) of active proxies whenever

their count changes.

First we evaluate the maximum throughput of the cluster at different power levels. As

shown in Fig. 20 the maximum throughput increases linearly with the available power

which dictates the maximum number of active nodes. Next, we evaluate the performance

of aforementioned blinking policies—Activation with key migration, Synchronous,
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Figure 20 Throughput of a 1,000 node cluster with each node having the maximum throughput of
1,000 req/s.

Load-proportional with key migration—at various steady and oscillating power levels.

Comparing Fig. 21A with Fig. 17B it becomes clear that the performance (or relative

performance) of different blinking policies does not vary much (within ±20%) with the

cluster size. Further, the load-proportional policy performs better than the activation

policy at high power for a large cluster, in construct to a small cluster of 10 nodes, as

the key migration overhead dominates the performance gain due to keeping the popular

keys on always-active servers for a large cluster at high power. But, like a small cluster,

the performance gain dominates the migration overhead for the activation policy at low

to medium power even for a large cluster. Figure 21B shows the hit rate for these three

blinking policies for different oscillation levels from the 45% of full power. As expected, the

hit rate for the activation policy drops down when the oscillation level increases because

the migration overhead increases with the oscillation level. But, for the synchronous and

load-proportional policies the hit rate remains the same at all oscillation levels because

they don’t incur any migration overhead.

GreenCache evaluation
We first benchmark GreenCache’s proxy and chunking overhead for our prototype. We

then evaluate GreenCache’s performance for real-world YouTube traces at multiple power

levels with varying levels of oscillation. We then demonstrate the performance using

realistic power traces from our energy harvesting deployment that have varying power

and oscillation levels. We use two metrics to measure the performance: (1) bandwidth

usage between the cache and YouTube servers and (2) average buffering or pause time at

the clients. Bandwidth usage denotes the total data received from backend servers over

a given time interval; it also represents bandwidth cost that mobile operators must pay

to Internet service providers. One primary objective of GreenCache is to reduce this

bandwidth usage. Another key objective of GreenCache is to improve user’s viewing
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Figure 21 Comparison of hit rate with load-proportional policy, synchronous policy and activation
policy for a Zipf popularity distribution. (A) Steady power. (B) Oscillating power.

experiences. Therefore, we consider average buffering time per video as our second metric

to measure the performance. Note that our implementation tries to optimize both metrics

independent of each other. However, optimizing for bandwidth usage does not depend on

the power level, but on the total cache size, while optimizing for buffering time depends on

both the cache size and the power level.

Benchmarks
To measure the proxy’s overhead, our client emulator creates a single thread and sends

multiple video requests in succession. The breakdown of the latency overhead at each

component for a sample 1 MB video chunk of 1 min play length, assuming a 135 Kbps

bit rate, is 30 ms at the proxy, 20 ms at the cache server, 50 ms in the network between

the proxy and cache server, and 100 ms in the network between the proxy and client. The

result demonstrates that the proxy’s latency overhead is low. We also benchmark average

buffering time for different blink intervals at various power levels. Table 5 shows the

standard deviation, 90th percentile, and average buffering time for video requests, as the

blink interval and power levels change. As expected, the buffering time increases with the

blink interval at low to moderate power levels. We also benchmark the standard deviation,

90th percentile, and average buffering time for requests going to YouTube servers, which

are as 150 ms, 570 ms, and 620 ms, respectively.

To study the performance of our prototype cache for different cache sizes and power

levels we take a 3 h trace (from 7 PM to 10 PM on February 7th, 2012) from our 3 day

YouTube trace. The trace contains a total of 8,815 requests, for 6,952 unique videos, over

the 3 h interval. Our trace reports the URL, video ID, client IP address, and request time

for each video. In addition, we pull the recommended list for each video in the trace from

the YouTube servers. Based on the video ID, its recommended list, client IP address, and

the next requested video ID, we calculate the viewing length for each video. We assume

the average video length as 5 min and the streaming rate as 135 Kbps. Also, we fix the

downlink bandwidth from backend YouTube servers to the WiMAX station to 1 Mbps, and

the storage capacity of each cache server as 1 GB. Further, we fix the blink interval as 60 s.

We use a weighing factor of 0.6 for the proposed popularity-aware eviction policy.
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Table 5 Standard deviation, 90th percentile, and average buffering time at different power levels and
blink intervals.

Buffering time (s) Power (%)

⇓ 20 40 60 80 100

Blink interval = 30 s

Std Dev 7.88 5.33 3 0.52 0.03

90th per 21.25 15.25 9.25 2.25 0.23

Avg. 10.99 6.12 3.88 2.35 0.25

Blink interval = 60 s

Std Dev 14.59 10.01 6.79 2.55 0.03

90th per 41.25 28.25 19.25 7.45 0.23

Avg. 20.58 10.19 6.94 3.36 0.25

Blink interval = 90 s

Std Dev 24.79 16.69 10.06 3.16 0.03

90th per 66.25 43.25 25.65 4.25 0.23

Avg. 29.44 15.12 8.50 3.22 0.25

Blink interval = 120 s

Std Dev 30.52 22.21 13.13 5.29 0.03

90th per 78.25 59.45 31.45 14.45 0.23

Avg. 32.73 21.58 9.81 4.58 0.25

First, we study the performance—bandwidth usage and buffering or pause time for

clients—for different number of cache servers at full power for the real world 3 h YouTube

trace, as well as a synthetic trace of 8,815 requests where each request is for a randomly

chosen video from the aforementioned 6,952 unique videos. In addition, we choose

least-recently-used (LRU) cache eviction policy for this experiment; further, videos are

not chunked. Figure 22 plots the total bandwidth usage and average buffering time for both

random and real traces. We also plot the optimal performance for real traces assuming we

know all requests in advance. The optimal policy always keeps most popular videos in the

cache, and never evicts a popular video to store a less popular video (over a given interval).

As expected, the total bandwidth usage and average buffering time over the 3 h interval

decreases as the size or number of servers increases.

Next, to study the benefits of video chunking we measure the performance of three

different cache eviction policies—LRU, popularity-aware, and optimal—for the 3 h

real trace at full power and 9 cache servers. Figure 23 shows that the performance of

GreenCache’s popularity-aware eviction policy is better (∼7%) than that of LRU. Further,

video chunking improves (>15%) the performance of all policies as it avoids storing

unpopular chunks of popular videos. In all cases, LRU performs worse than others, which

motivates our use of a popularity-aware cache eviction policy and video chunking for all

further experiments.

Staggered load-proportional blinking
As discussed earlier, the total bandwidth usage over a fixed interval, as long as a request

does not go to backend servers for an already cached video, does not depend on the
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Figure 22 Both bandwidth usage and buffering time reduce with increasing cache size. (A) Bandwidth
usage. (B) Buffering time.

Figure 23 Video chunking reduces both bandwidth usage and buffering time. (A) Bandwidth usage.
(B) Buffering time.

available power level or blinking and layout policies; it only depends on the cache size

and eviction policies. However, buffering time and users’ experiences do depend on

the available power, blinking and layout policies. In this section, we study the effects of

the power level on the average buffering time, and various optimizations designed to

reduce the buffering time. We use the same 3 h real YouTube trace, as discussed above,

and 9 cache servers for all further experiments. Further, we use video chunking and the

popularity-aware eviction policy for all experiments.

To compare the proposed staggered load-proportional policy with the activa-

tion and load-proportional policies, we also implement an activation policy and a

load-proportional policy for GreenCache, and integrate them with GreenCache’s

popularity-aware eviction policy, video chunking, and popularity-aware migration

policy. The activation policy activates or deactivates servers as power varies, whereas the

load-proportional policy distributes the power to servers in proportion to their popularity.

Similar to the load-proportional policy, the activation policy also migrates popular chunks

to active servers while deactivating servers due to the drop in the power level. Unlike

the proposed staggered load-proportional policy, the load-proportional policy does not

replicate video chunks because it does not benefit from replication as it activates all servers

at the same time every blink interval.
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Figure 24 Buffering time at various steady and oscillating power levels. (A) Steady power. (B) Oscillat-
ing power.

Figure 24A shows the average buffering time at different steady power levels. As

expected, the activation policy performs better than the load-proportional policy at low

power levels since, unlike the load-proportional policy, the activation policy does not incur

the blinking overhead, which becomes significant in comparison to the active interval

at low power levels. However, at moderate to high steady power levels, the benefit of a

larger cache size, albeit blinking, dominates the blinking overhead for real-world traces.

Furthermore, the buffering time decreases significantly if first chunks are replicated on

all servers. Even at low power levels, replication of initial chunks significantly reduces

the buffering time, while still leveraging the benefits of a larger cache size. Moreover,

the performance of the staggered load-proportional policy remains almost the same at

all power levels. As video popularity changes infrequently, migration overheads in our

experiments are modest (∼2%).

Figure 24B compares the average buffering time for the above policies at different

oscillating power levels. We oscillate available power every five minutes. Since migration

overhead of the staggered proportional policy is independent of power level, its perfor-

mance remains almost the same at all oscillation levels. However, the activation policy

incurs migration overhead whenever the number of active servers decreases. Consequently,

the activation policy performs poorly at high oscillation levels, as indicated in the figure.

Though replication of initial chunks reduces the buffering time at all power levels, it is

primarily required at low power levels.

Next, we evaluate the benefits of prefetching initial chunks of related videos. As Fig. 25

indicates, prefetching initial chunks of the top five videos reduces the buffering time

by 10% as compared to no prefetching. Further, since prefetching more videos doesn’t

improve the buffering time, we limit the cache to prefetching only first chunks of top few

videos from the related list. We choose to prefetch top five videos only in order to strike a

balance between the performance gain and prefetching overhead.

Case study
To experiment with our WiMAX base station using a real WiMAX client, we use a Linux

Desktop with Intel Atom CPU N270 processor and 1 GB RAM connected to Teltonika

USB WiMAX Modem. We disable all network interfaces except the WiMAX interface. The
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Figure 25 Buffering time decreases as the number of prefetched videos (first chunk only) from related
lists increases.

desktop connects to the WiMAX base station (NEC Rel.1 802.16eBS), which we configure

to route all video requests from the desktop to the proxy. We replay the same 3 h YouTube

trace on the WiMAX client, but we use real power traces from our solar/wind deployment,

as described in the previous section, to power the GreenCache cluster.

Figure 26 plots average buffering time, calculated every five minutes, for three blinking

policies: activation, load proportional, and staggered load proportional with first chunks

replicated. As expected, the performance of all three policies goes down (buffering time

goes up) when the available power drops down, and vice versa. However, the performance

of activation degrades more than that of load-proportional when the available power drops

down, since the activation policy incurs migration overhead when the number of active

servers decreases. Further, replicating first chunks significantly reduces the buffering time

for the staggered load-proportional policy at all power levels. Since the migration overhead

of the staggered load-proportional policy is independent of power levels, its performance

does not vary much, not even when the available power changes significantly, if first chunks

are replicated.

GreenCache scalability
Next, we use the Blink emulator to study how GreenCache performs on a cluster of 1,000

nodes for the YouTube dataset and user request trace described above. We run all Blink

and GreenCache modules as described above, and use the benchmark results to set the

throughput, access latency, and power consumption of servers. Figures 27A and 27B show

the average latency and bandwidth, respectively, at various power levels. As expected, both

the average latency and bandwidth cost reduce with increasing power levels as the number

of active nodes or the total cache size increases with the power level.

Figure 28A shows the buffering time for the aforementioned blinking policies at

three different steady power levels. As expected, the staggered load-proportional policy

performs best at all power levels due to the replication of first chunk of all videos. The
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Figure 26 Buffering time at various power levels for our combined solar/wind power trace.

Figure 27 Latency and bandwidth cost on 1,000 node cluster for YouTube video requests with steady
available power. (A) Average latency in video requests. (B) Average bandwidth cost in video requests.

load-proportional policy recalculates the popularity of chunks every 5,000 requests and

migrates popular chunks to mostly active servers. Comparing Figs. 24A and 28A it is

evident that the relative performance of different policies does not vary much with the

cluster size. Similarly, Figs. 24B and 28B indicates that all three blinking policies give

similar performance (or relative performance) for a small as well as a large cluster.

RELATED WORK
The sensor network community has studied strategies for dealing with variable sources of

renewable power, since these systems often do not have access to the power grid. However,

since sensor networks are geographically distributed, each node must harvest its own

energy, resulting in network-wide energy imbalances (Fan, Zheng & Sinha, 2008), whereas
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Figure 28 Buffering time with activation policy, load proportional policy, and staggered load propor-
tional policy. (A) Steady power. Oscillating power.

data center nodes share a common power delivery infrastructure. Further, the primary

performance metric for a sensor network is the amount of data the network collects. As

a result, much of the energy harvesting work is not directly applicable to data centers.

Similarly, mobile computing generally focuses on extending battery life by regulating

power consumption (Zeng et al., 2002), rather than modulating performance to match

energy production.

The increasing energy consumption of data centers (US Environmental Protection

Agency, 2007) has led companies to invest heavily in renewable energy sources (Miller,

2008; Stone, 2007). For example, the goal of Google’s RE < C initiative is to make

large-scale renewable power generation cheaper than coal-based production. As a result,

researchers have started to study how to incorporate renewables into a data center’s

power delivery infrastructure (Stewart & Shen, 2009). As one example, Lee et al. (2010)

use request redirection to control the carbon footprint of data centers by redirecting

load to servers powered by renewable energy sources. While not directly related to

energy harvesting, Power Routing (Pelley et al., 2010) proposes shuffled power delivery

topologies that allow data centers to control how much power each rack receives. While

the topologies are well-suited for delivering variable amounts of power to racks based

on aggregate demand, they are also useful for flexible routing of a variable power supply.

Prior research on workload-driven approaches to improve data center energy efficiency

is orthogonal to our work. Examples include designing platforms that balance CPU and

I/O capacity (Anderson et al., 2009; Rivoire et al., 2008), routing requests to locations with

the cheapest energy (Qureshi et al., 2009), and dynamically activating and deactivating

nodes as demand rises and falls (Chase et al., 2001; Tolia et al., 2008; Krioukov et al.,

2010). PowerNap’s node-level energy proportional technique has also been viewed as a

workload-driven optimization (Meisner, Gold & Wenisch, 2009). We show that a similar

technique is useful for controlling per-node power consumption in a power-driven system.

Power capping has also been studied previously in data centers to ensure collections of

nodes do not exceed a worst-case power budget (Ranganathan et al., 2006; Fan, Weber &

Barroso, 2007b). However, the work assumes exceeding the power budget is a rare transient

event that does not warrant application-specific modifications, and that traditional
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power management techniques, e.g., DVFS, are capable of enforcing the budget. These

assumptions may not hold in many scenarios with intermittent power constraints, as

with our renewable energy power source. Gandhi et al. (2009) cap CPU power by forcing

CPU idle periods. While similar, blinking focuses on capping per-node power where the

CPU is only one component of the total power draw. Improving the energy-efficiency

of storage is also a related research area. While Memcached does not offer persistent

storage, our modifications for blinking adapt similar ideas from prior storage research,

such as migrating popular objects to more active nodes (Pinheiro & Bianchini, 2004; Zhu

et al., 2005a). Additionally, power-aware caching algorithms focus on maximizing the idle

time between disk accesses to reduce disk power consumption, while our work focus on

controlling the power consumption of the cache itself (Zhu et al., 2005b).

Blinking introduces regulated churn into data center applications as nodes switch from

the active to inactive state. Churn has been well-studied in decentralized, self-organizing

distributed hash tables (Stoica et al., 2001). However, the type of churn experienced by

DHTs is different than the churn caused by blinking, which motivates our different

approach to the problem. In the former case, nodes arrive and depart unexpectedly

based on autonomous user behavior and network conditions, while in the latter case,

nodes switch between the active and inactive states in a regular and controllable fashion.

RAMCloud (Ousterhout et al., 2009) proposes using memory for low-latency persistent

storage, and cites as motivation the increasingly large memcached clusters used in

production data centers.

The use of caches to improve the performance of multimedia distribution systems has

been studied extensively in the past two decades. Tang, Xu & Chanson (2005) gives a general

overview on existing multimedia caching techniques. Due to the vast amount of exiting

work in this area, we only focus on the work closely related to our approach, although, to

the best of our knowledge, there is no existing work that directly addresses multimedia

caches for intermittent power.

Wu, Yu & Wolf (2001) were among the first to propose the caching of chunks (segments)

of a video. In contrast to our approach chunks are not equal in size and increase

exponentially with the distance from the start of the video. The intention of this approach

is to combine the number of consecutive chunks that are cached with the popularity of

the video. E.g., for a very popular video all chunks would be stored on the cache while

for less popular chunks only a certain number of the initial chunks of the video would be

cached. Letting the chunk size grow exponentially has the advantage that the initial chunks

of many videos can be stored without occupying too much of the caches storage space.

Having only one or several initial chunks of a video stored on the cache bears the advantage

that a requested video can be streamed to the client and played out without significant

delay. Missing chunks can be streamed from the server immediately after the initial client

request to allow for a smooth play out. In contrast to the approach presented by Wu et al.,

we decided for a scheme that splits all videos in equal sized chunks (except for the very last

chunk) where the complete chunk can be transmitted to the client in a period that is equal

or smaller than the blink interval, assuming a minimum transmission rate.

Sharma et al. (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.34 44/50

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.34


A more restrictive version of the caching of video chunks is the caching of the first

chunk (prefix) only, which was introduced by Sen, Rexford & Towsley (1999). The sole

goal of this approach is to reduce the buffer time at the client, since the first chunk can

be streamed from the cache much faster than from a remote server. Our initial work on

prefix prefetching of videos listed on YouTube’s related video list (Khemmarart et al., 2011)

is based on this approach, but proactively prefetches prefixes instead of caching them. As

we have shown in Khemmarart et al. (2011), prefix prefetching can significantly improve

the viewer’s experience of watching videos and this motivated us to investigate how the

prefetching approach performs on a multimedia cache for intermittent power. The results

presented above show that prefix prefetching can improve the experience of a viewer also in

the case of a blinking multimedia cache.

As in our current work, trace-based driven simulations are also used in Cha et al. (2007)

and Zink et al. (2009) to investigate the effectiveness of caching for YouTube videos. Both

investigations show that caching of YouTube video can both, on a global and regional level,

reduce server and network load significantly. In contrast to the work presented in this

paper, both studies do not consider scenarios in which power for the caches is intermittent.

APPLICABILITY OF BLINKING
While we apply blinking to two distributed applications in this paper, we believe blinking

is applicable to other applications with intermittent power constraints. There are a

range of scenarios beyond renewable energy where imposing intermittent constraints

may be attractive. For example, data centers may wish to participate in automated

demand-response programs with the electric grid. Automated demand-response, which

is a cornerstone of a future smart electric grid, decreases power levels at participating

consumers when the electric grid is under stress in exchange for lower power rates. Data

centers are well-positioned to benefit from automated demand-response, since servers,

as opposed to other types of electrical appliances, already include sophisticated power

management mechanisms and are remotely programmable. Blink simply uses these

pre-existing mechanisms to gracefully scale application performance as power varies.

Additionally, data centers consume significant quantities of power, and demand-response

programs typically target large power consumers first. Thus, addressing intermittent

constraints in data centers may contribute to a more flexible and efficient electric grid.

In addition to automated demand-response programs, data center operators may wish

to cap energy bills or power consumption at a fixed level for a variety of reasons, which

also imposes intermittent power constraints. For instance, capping energy bills imposes

variable power constraints when energy prices vary, as with wholesale energy prices which

vary at intervals as low as every 5 min (Qureshi et al., 2009). Thus, as market prices vary, the

amount of power a fixed budget purchases will also vary. Capping power is also necessary

during “brownout” scenarios, more common in developing countries, where the electric

grid is not always able to fully meet demand. Further, Ranganathan et al. (2006), as well

as others (Fan, Weber & Barroso, 2007b), point out the benefits of oversubscribing a data
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center’s power delivery infrastructure, including the possibility of using dense clusters of

lower-cost, but higher-power, components and then capping power to prevent damage.

Finally, we believe blinking is applicable to applications beyond memcached and

multimedia cache. As with caches, applying blinking will likely require application-level

modifications to handle regular and periodic disconnections. One particularly interesting

case is leveraging blinking to run distributed storage systems under intermittent power

constraints, such as in “brownout” scenarios. Persistent storage presents a different

problem than caches, since there is not an alternative always-on option to fallback on

to retrieve data. While we measure the performance of distributed caches primarily as

a function of hit rate, a blinking storage system’s performance is primarily a measure of

data availability, including both the latency and throughput to access data. As a result, a

blinking storage system may need to judiciously replicate data to increase availability and

ensure consistency across replicas, despite regular and frequent node transitions between

the active and inactive states.

CONCLUSION
In this paper, we focus on managing server clusters running on intermittent power. We

propose blinking as the primary abstraction for handling intermittent power constraints,

and define multiple types of blinking policies. We then design an application-independent

platform for developing and evaluating blinking applications, and use it to perform an

in-depth study of the effects of blinking on two distributed applications—memcached

and multimedia cache—for various power signals. We find that while an activation policy

with key migration results in the best hit rates, it does not distribute the benefits of the

cache equally among equally popular objects. As in-memory caches continue grow in size,

they will store a greater fraction of equally popular objects for Zipf-like object popularity

distributions. We propose and evaluate an asymmetric load-proportional policy to

increase fairness without significantly sacrificing the cache’s hit rate. We then propose a

staggered load-proportional policy that staggers the start time of servers to maximize the

availability of at least one active server. Staggering the start time in conjunction with

first chunk replication improves the performance of a multimedia cache, but it does

not improve that of memcached because it is a key-value storage system and, unlike

the multimedia cache, it does not stream data. We are currently studying how blinking

applies to other types of data center applications, including distributed storage layers and

data-intensive batch systems.
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